432 lines
17 KiB
Python
432 lines
17 KiB
Python
import json
|
|
import logging
|
|
import asyncio
|
|
from flask import Flask, request, Response, stream_with_context
|
|
import httpx
|
|
import time
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import ast
|
|
|
|
# 配置日志
|
|
logging.basicConfig(
|
|
level=logging.DEBUG,
|
|
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# 设置 httpx 的日志级别
|
|
logging.getLogger("httpx").setLevel(logging.DEBUG)
|
|
|
|
# 加载环境变量
|
|
load_dotenv()
|
|
|
|
class DifyModelManager:
|
|
def __init__(self):
|
|
self.api_keys = []
|
|
self.name_to_api_key = {} # 应用名称到API Key的映射
|
|
self.api_key_to_name = {} # API Key到应用名称的映射
|
|
self.load_api_keys()
|
|
|
|
def load_api_keys(self):
|
|
"""从环境变量加载API Keys"""
|
|
api_keys_str = os.getenv('DIFY_API_KEYS', '')
|
|
if api_keys_str:
|
|
self.api_keys = [key.strip() for key in api_keys_str.split(',') if key.strip()]
|
|
logger.info(f"Loaded {len(self.api_keys)} API keys")
|
|
|
|
async def fetch_app_info(self, api_key):
|
|
"""获取Dify应用信息"""
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
response = await client.get(
|
|
f"{DIFY_API_BASE}/info",
|
|
headers=headers,
|
|
params={"user": "default_user"}
|
|
)
|
|
|
|
if response.status_code == 200:
|
|
app_info = response.json()
|
|
return app_info.get("name", "Unknown App")
|
|
else:
|
|
logger.error(f"Failed to fetch app info for API key: {api_key[:8]}...")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Error fetching app info: {str(e)}")
|
|
return None
|
|
|
|
async def refresh_model_info(self):
|
|
"""刷新所有应用信息"""
|
|
self.name_to_api_key.clear()
|
|
self.api_key_to_name.clear()
|
|
|
|
for api_key in self.api_keys:
|
|
app_name = await self.fetch_app_info(api_key)
|
|
if app_name:
|
|
self.name_to_api_key[app_name] = api_key
|
|
self.api_key_to_name[api_key] = app_name
|
|
logger.info(f"Mapped app '{app_name}' to API key: {api_key[:8]}...")
|
|
|
|
def get_api_key(self, model_name):
|
|
"""根据模型名称获取API Key"""
|
|
return self.name_to_api_key.get(model_name)
|
|
|
|
def get_available_models(self):
|
|
"""获取可用模型列表"""
|
|
return [
|
|
{
|
|
"id": name,
|
|
"object": "model",
|
|
"created": int(time.time()),
|
|
"owned_by": "dify"
|
|
}
|
|
for name in self.name_to_api_key.keys()
|
|
]
|
|
|
|
# 创建模型管理器实例
|
|
model_manager = DifyModelManager()
|
|
|
|
# 从环境变量获取API基础URL
|
|
DIFY_API_BASE = os.getenv("DIFY_API_BASE", "")
|
|
|
|
app = Flask(__name__)
|
|
|
|
def get_api_key(model_name):
|
|
"""根据模型名称获取对应的API密钥"""
|
|
api_key = model_manager.get_api_key(model_name)
|
|
if not api_key:
|
|
logger.warning(f"No API key found for model: {model_name}")
|
|
return api_key
|
|
|
|
def transform_openai_to_dify(openai_request, endpoint):
|
|
"""将OpenAI格式的请求转换为Dify格式"""
|
|
|
|
if endpoint == "/chat/completions":
|
|
messages = openai_request.get("messages", [])
|
|
stream = openai_request.get("stream", False)
|
|
|
|
dify_request = {
|
|
"inputs": {},
|
|
"query": messages[-1]["content"] if messages else "",
|
|
"response_mode": "streaming" if stream else "blocking",
|
|
"conversation_id": openai_request.get("conversation_id", None),
|
|
"user": openai_request.get("user", "default_user")
|
|
}
|
|
|
|
# 添加历史消息
|
|
if len(messages) > 1:
|
|
history = []
|
|
for msg in messages[:-1]: # 除了最后一条消息
|
|
history.append({
|
|
"role": msg["role"],
|
|
"content": msg["content"]
|
|
})
|
|
dify_request["conversation_history"] = history
|
|
|
|
return dify_request
|
|
|
|
return None
|
|
|
|
def transform_dify_to_openai(dify_response, model="claude-3-5-sonnet-v2", stream=False):
|
|
"""将Dify格式的响应转换为OpenAI格式"""
|
|
|
|
if not stream:
|
|
return {
|
|
"id": dify_response.get("message_id", ""),
|
|
"object": "chat.completion",
|
|
"created": dify_response.get("created", int(time.time())),
|
|
"model": model, # 使用实际使用的模型
|
|
"choices": [{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": dify_response.get("answer", "")
|
|
},
|
|
"finish_reason": "stop"
|
|
}]
|
|
}
|
|
else:
|
|
# 流式响应的转换在stream_response函数中处理
|
|
return dify_response
|
|
|
|
def create_openai_stream_response(content, message_id, model="claude-3-5-sonnet-v2"):
|
|
"""创建OpenAI格式的流式响应"""
|
|
return {
|
|
"id": message_id,
|
|
"object": "chat.completion.chunk",
|
|
"created": int(time.time()),
|
|
"model": model,
|
|
"choices": [{
|
|
"index": 0,
|
|
"delta": {
|
|
"content": content
|
|
},
|
|
"finish_reason": None
|
|
}]
|
|
}
|
|
|
|
@app.route('/v1/chat/completions', methods=['POST'])
|
|
def chat_completions():
|
|
try:
|
|
openai_request = request.get_json()
|
|
logger.info(f"Received request: {json.dumps(openai_request, ensure_ascii=False)}")
|
|
|
|
model = openai_request.get("model", "claude-3-5-sonnet-v2")
|
|
logger.info(f"Using model: {model}")
|
|
|
|
# 验证模型是否支持
|
|
api_key = get_api_key(model)
|
|
if not api_key:
|
|
error_msg = f"Model {model} is not supported. Available models: {', '.join(model_manager.name_to_api_key.keys())}"
|
|
logger.error(error_msg)
|
|
return {
|
|
"error": {
|
|
"message": error_msg,
|
|
"type": "invalid_request_error",
|
|
"code": "model_not_found"
|
|
}
|
|
}, 404
|
|
|
|
dify_request = transform_openai_to_dify(openai_request, "/chat/completions")
|
|
logger.info(f"Transformed request: {json.dumps(dify_request, ensure_ascii=False)}")
|
|
|
|
if not dify_request:
|
|
logger.error("Failed to transform request")
|
|
return {
|
|
"error": {
|
|
"message": "Invalid request format",
|
|
"type": "invalid_request_error",
|
|
}
|
|
}, 400
|
|
|
|
headers = {
|
|
"Authorization": f"Bearer {api_key}",
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
stream = openai_request.get("stream", False)
|
|
dify_endpoint = f"{DIFY_API_BASE}/chat-messages"
|
|
logger.info(f"Sending request to Dify endpoint: {dify_endpoint}, stream={stream}")
|
|
|
|
if stream:
|
|
def generate():
|
|
client = httpx.Client(timeout=None)
|
|
|
|
def flush_chunk(chunk_data):
|
|
"""Helper function to flush chunks immediately"""
|
|
return chunk_data.encode('utf-8')
|
|
|
|
def calculate_delay(buffer_size):
|
|
"""
|
|
根据缓冲区大小动态计算延迟
|
|
buffer_size: 缓冲区中剩余的字符数量
|
|
"""
|
|
if buffer_size > 30: # 缓冲区内容较多,快速输出
|
|
return 0.001 # 5ms延迟
|
|
elif buffer_size > 20: # 中等数量,适中速度
|
|
return 0.002 # 10ms延迟
|
|
elif buffer_size > 10: # 较少内容,稍慢速度
|
|
return 0.01 # 20ms延迟
|
|
else: # 内容很少,使用较慢的速度
|
|
return 0.02 # 30ms延迟
|
|
|
|
def send_char(char, message_id):
|
|
"""Helper function to send single character"""
|
|
openai_chunk = {
|
|
"id": message_id,
|
|
"object": "chat.completion.chunk",
|
|
"created": int(time.time()),
|
|
"model": model,
|
|
"choices": [{
|
|
"index": 0,
|
|
"delta": {
|
|
"content": char
|
|
},
|
|
"finish_reason": None
|
|
}]
|
|
}
|
|
chunk_data = f"data: {json.dumps(openai_chunk)}\n\n"
|
|
return flush_chunk(chunk_data)
|
|
|
|
# 初始化缓冲区
|
|
output_buffer = []
|
|
|
|
try:
|
|
with client.stream(
|
|
'POST',
|
|
dify_endpoint,
|
|
json=dify_request,
|
|
headers={
|
|
**headers,
|
|
'Accept': 'text/event-stream',
|
|
'Cache-Control': 'no-cache',
|
|
'Connection': 'keep-alive'
|
|
}
|
|
) as response:
|
|
generate.message_id = None
|
|
buffer = ""
|
|
|
|
for raw_bytes in response.iter_raw():
|
|
if not raw_bytes:
|
|
continue
|
|
|
|
try:
|
|
buffer += raw_bytes.decode('utf-8')
|
|
|
|
while '\n' in buffer:
|
|
line, buffer = buffer.split('\n', 1)
|
|
line = line.strip()
|
|
|
|
if not line or not line.startswith('data: '):
|
|
continue
|
|
|
|
try:
|
|
json_str = line[6:]
|
|
dify_chunk = json.loads(json_str)
|
|
|
|
if dify_chunk.get("event") == "message" and "answer" in dify_chunk:
|
|
current_answer = dify_chunk["answer"]
|
|
if not current_answer:
|
|
continue
|
|
|
|
message_id = dify_chunk.get("message_id", "")
|
|
if not generate.message_id:
|
|
generate.message_id = message_id
|
|
|
|
# 将当前批次的字符添加到输出缓冲区
|
|
for char in current_answer:
|
|
output_buffer.append((char, generate.message_id))
|
|
|
|
# 根据缓冲区大小动态调整输出速度
|
|
while output_buffer:
|
|
char, msg_id = output_buffer.pop(0)
|
|
yield send_char(char, msg_id)
|
|
# 根据剩余缓冲区大小计算延迟
|
|
delay = calculate_delay(len(output_buffer))
|
|
time.sleep(delay)
|
|
|
|
# 立即继续处理下一个请求
|
|
continue
|
|
|
|
elif dify_chunk.get("event") == "message_end":
|
|
# 快速输出剩余内容
|
|
while output_buffer:
|
|
char, msg_id = output_buffer.pop(0)
|
|
yield send_char(char, msg_id)
|
|
time.sleep(0.001) # 固定使用最小延迟快速输出剩余内容
|
|
|
|
final_chunk = {
|
|
"id": generate.message_id,
|
|
"object": "chat.completion.chunk",
|
|
"created": int(time.time()),
|
|
"model": model,
|
|
"choices": [{
|
|
"index": 0,
|
|
"delta": {},
|
|
"finish_reason": "stop"
|
|
}]
|
|
}
|
|
yield flush_chunk(f"data: {json.dumps(final_chunk)}\n\n")
|
|
yield flush_chunk("data: [DONE]\n\n")
|
|
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"JSON decode error: {str(e)}")
|
|
continue
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error processing chunk: {str(e)}")
|
|
continue
|
|
|
|
finally:
|
|
client.close()
|
|
|
|
return Response(
|
|
stream_with_context(generate()),
|
|
content_type='text/event-stream',
|
|
headers={
|
|
'Cache-Control': 'no-cache, no-transform',
|
|
'Connection': 'keep-alive',
|
|
'Transfer-Encoding': 'chunked',
|
|
'X-Accel-Buffering': 'no',
|
|
'Content-Encoding': 'none'
|
|
},
|
|
direct_passthrough=True
|
|
)
|
|
else:
|
|
async def sync_response():
|
|
try:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
dify_endpoint,
|
|
json=dify_request,
|
|
headers=headers
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
error_msg = f"Dify API error: {response.text}"
|
|
logger.error(f"Request failed: {error_msg}")
|
|
return {
|
|
"error": {
|
|
"message": error_msg,
|
|
"type": "api_error",
|
|
"code": response.status_code
|
|
}
|
|
}, response.status_code
|
|
|
|
dify_response = response.json()
|
|
logger.info(f"Received response from Dify: {json.dumps(dify_response, ensure_ascii=False)}")
|
|
openai_response = transform_dify_to_openai(dify_response, model=model)
|
|
return openai_response
|
|
except httpx.RequestError as e:
|
|
error_msg = f"Failed to connect to Dify: {str(e)}"
|
|
logger.error(error_msg)
|
|
return {
|
|
"error": {
|
|
"message": error_msg,
|
|
"type": "api_error",
|
|
"code": "connection_error"
|
|
}
|
|
}, 503
|
|
|
|
return asyncio.run(sync_response())
|
|
|
|
except Exception as e:
|
|
logger.exception("Unexpected error occurred")
|
|
return {
|
|
"error": {
|
|
"message": str(e),
|
|
"type": "internal_error",
|
|
}
|
|
}, 500
|
|
|
|
@app.route('/v1/models', methods=['GET'])
|
|
def list_models():
|
|
"""返回可用的模型列表"""
|
|
logger.info("Listing available models")
|
|
|
|
# 刷新模型信息
|
|
asyncio.run(model_manager.refresh_model_info())
|
|
|
|
# 获取可用模型列表
|
|
available_models = model_manager.get_available_models()
|
|
|
|
response = {
|
|
"object": "list",
|
|
"data": available_models
|
|
}
|
|
logger.info(f"Available models: {json.dumps(response, ensure_ascii=False)}")
|
|
return response
|
|
|
|
if __name__ == '__main__':
|
|
# 启动时初始化模型信息
|
|
asyncio.run(model_manager.refresh_model_info())
|
|
|
|
host = os.getenv("SERVER_HOST", "127.0.0.1")
|
|
port = int(os.getenv("SERVER_PORT", 5000))
|
|
logger.info(f"Starting server on http://{host}:{port}")
|
|
app.run(debug=True, host=host, port=port)
|