This commit is contained in:
LzSkyline 2025-01-07 15:16:09 +08:00
commit 67b4558ef0
5 changed files with 641 additions and 0 deletions

10
.env.example Normal file
View File

@ -0,0 +1,10 @@
# Dify Model Configurations
# Format: JSON string in one line
MODEL_CONFIG={"claude-3-5-sonnet-v2":"app-xxxxxxxxxxxxxxxx","gemini-2.0-flash-thinking-exp-1219":"app-xxxxxxxxxxxxxxxx","o1-preview":"app-xxxxxxxxxxxxxxxx"}
# Dify API Base URL
DIFY_API_BASE="https://api.dify.example.com/v1"
# Server Configuration
SERVER_HOST="127.0.0.1"
SERVER_PORT=5000

64
.gitignore vendored Normal file
View File

@ -0,0 +1,64 @@
# Python
__pycache__/
*.py[cod]
*$py.class
*.so
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg
# Virtual Environment
venv/
env/
ENV/
.env
# IDE
.idea/
.vscode/
*.swp
*.swo
.DS_Store
# Logs
*.log
logs/
# Local development
.env
.env.local
.env.*.local
# Testing
.coverage
htmlcov/
.pytest_cache/
.tox/
.nox/
coverage.xml
*.cover
.hypothesis/
# Distribution
*.pyc
*.pyo
*.pyd
.Python
*.so
# Project specific
*.pid
*.sock

168
README.md Normal file
View File

@ -0,0 +1,168 @@
# OpenDify
OpenDify 是一个将 Dify API 转换为 OpenAI API 格式的代理服务器。它允许使用 OpenAI API 客户端直接与 Dify 服务进行交互。
> 🌟 本项目完全由 Cursor + Claude-3.5 自动生成未手动编写任何代码包括此Readme向 AI 辅助编程的未来致敬!
## 功能特点
- 完整支持 OpenAI API 格式转换为 Dify API
- 支持流式输出Streaming
- 智能动态延迟控制,提供流畅的输出体验
- 支持多个模型配置
- 完整的错误处理和日志记录
- 兼容标准的 OpenAI API 客户端
- 灵活的模型配置支持
## 支持的模型
支持任意 Dify 模型,只需在配置文件中添加对应的 API Key 即可。
## 快速开始
### 环境要求
- Python 3.9+
- pip
### 安装依赖
```bash
pip install -r requirements.txt
```
### 配置
1. 复制 `.env.example` 文件并重命名为 `.env`
```bash
cp .env.example .env
```
2. 在 Dify 平台配置应用:
- 登录 Dify 平台,进入工作室
- 点击"创建应用",配置好需要的模型(如 Claude、Gemini 等)
- 配置应用的提示语和其他参数
- 发布应用
- 进入"访问 API"页面,生成 API 密钥
> **重要说明**Dify 不支持在请求时动态传入提示词、切换模型及其他参数。所有这些配置都需要在创建应用时设置好。Dify 会根据 API 密钥来确定使用哪个应用及其对应的配置。
3. 在 `.env` 文件中配置你的 Dify 模型和 API Keys
```env
# Dify Model Configurations
# 注意:必须是单行的 JSON 字符串格式
MODEL_CONFIG={"claude-3-5-sonnet-v2":"your-claude-api-key","custom-model":"your-custom-api-key"}
# Dify API Base URL
DIFY_API_BASE="https://your-dify-api-base-url/v1"
# Server Configuration
SERVER_HOST="127.0.0.1"
SERVER_PORT=5000
```
你可以根据需要添加或删除模型配置,但必须保持 JSON 格式在单行内。这是因为 python-dotenv 的限制。
每个模型配置的格式为:`"模型名称": "Dify应用的API密钥"`。其中:
- 模型名称:可以自定义,用于在 API 调用时识别不同的应用
- API 密钥:从 Dify 平台获取的应用 API 密钥
例如,如果你在 Dify 上创建了一个使用 Claude 的翻译应用和一个使用 Gemini 的代码助手应用,可以这样配置:
```env
MODEL_CONFIG={"translator":"app-xxxxxx","code-assistant":"app-yyyyyy"}
```
### 运行服务
```bash
python openai_to_dify.py
```
服务将在 `http://127.0.0.1:5000` 启动
## API 使用
### List Models
获取所有可用模型列表:
```python
import openai
openai.api_base = "http://127.0.0.1:5000/v1"
openai.api_key = "any" # 可以使用任意值
# 获取可用模型列表
models = openai.Model.list()
print(models)
# 输出示例:
{
"object": "list",
"data": [
{
"id": "claude-3-5-sonnet-v2",
"object": "model",
"created": 1704603847,
"owned_by": "dify"
},
{
"id": "gemini-2.0-flash-thinking-exp-1219",
"object": "model",
"created": 1704603847,
"owned_by": "dify"
},
// ... 其他在 MODEL_CONFIG 中配置的模型
]
}
```
只有在 `.env` 文件的 `MODEL_CONFIG` 中配置了 API Key 的模型才会出现在列表中。
### Chat Completions
```python
import openai
openai.api_base = "http://127.0.0.1:5000/v1"
openai.api_key = "any" # 可以使用任意值
response = openai.ChatCompletion.create(
model="claude-3-5-sonnet-v2", # 使用在 MODEL_CONFIG 中配置的模型名称
messages=[
{"role": "user", "content": "你好"}
],
stream=True
)
for chunk in response:
print(chunk.choices[0].delta.content or "", end="")
```
## 特性说明
### 流式输出优化
- 智能缓冲区管理
- 动态延迟计算
- 平滑的输出体验
### 错误处理
- 完整的错误捕获和处理
- 详细的日志记录
- 友好的错误提示
### 配置灵活性
- 支持动态添加新模型
- 支持 JSON 格式配置
- 支持自定义模型名称
## 贡献指南
欢迎提交 Issue 和 Pull Request 来帮助改进项目。
## 许可证
[MIT License](LICENSE)

395
main.py Normal file
View File

@ -0,0 +1,395 @@
import json
import logging
import asyncio
from flask import Flask, request, Response, stream_with_context
import httpx
import time
from dotenv import load_dotenv
import os
import ast
# 配置日志
logging.basicConfig(
level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# 设置 httpx 的日志级别
logging.getLogger("httpx").setLevel(logging.DEBUG)
# 加载环境变量
load_dotenv()
def parse_model_config():
"""
从环境变量解析模型配置
返回一个字典 {model_name: api_key}
"""
try:
config_str = os.getenv('MODEL_CONFIG', '{}')
# 尝试作为Python字典解析
try:
return ast.literal_eval(config_str)
except (SyntaxError, ValueError) as e:
logger.error(f"Failed to parse MODEL_CONFIG as Python dict: {e}")
try:
# 尝试作为JSON解析
return json.loads(config_str)
except json.JSONDecodeError as e:
logger.error(f"Failed to parse MODEL_CONFIG as JSON: {e}")
return {}
except Exception as e:
logger.error(f"Error parsing MODEL_CONFIG: {e}")
return {}
# 从环境变量获取配置
MODEL_TO_API_KEY = parse_model_config()
# 根据MODEL_TO_API_KEY自动生成模型信息
AVAILABLE_MODELS = [
{
"id": model_id,
"object": "model",
"created": int(time.time()),
"owned_by": "dify"
}
for model_id, api_key in MODEL_TO_API_KEY.items()
if api_key is not None # 只包含配置了API Key的模型
]
app = Flask(__name__)
# 从环境变量获取API基础URL
DIFY_API_BASE = os.getenv("DIFY_API_BASE", "https://mify-be.pt.xiaomi.com/api/v1")
def get_api_key(model_name):
"""根据模型名称获取对应的API密钥"""
api_key = MODEL_TO_API_KEY.get(model_name)
if not api_key:
logger.warning(f"No API key found for model: {model_name}")
return api_key
def transform_openai_to_dify(openai_request, endpoint):
"""将OpenAI格式的请求转换为Dify格式"""
if endpoint == "/chat/completions":
messages = openai_request.get("messages", [])
stream = openai_request.get("stream", False)
dify_request = {
"inputs": {},
"query": messages[-1]["content"] if messages else "",
"response_mode": "streaming" if stream else "blocking",
"conversation_id": openai_request.get("conversation_id", None),
"user": openai_request.get("user", "default_user")
}
# 添加历史消息
if len(messages) > 1:
history = []
for msg in messages[:-1]: # 除了最后一条消息
history.append({
"role": msg["role"],
"content": msg["content"]
})
dify_request["conversation_history"] = history
return dify_request
return None
def transform_dify_to_openai(dify_response, model="claude-3-5-sonnet-v2", stream=False):
"""将Dify格式的响应转换为OpenAI格式"""
if not stream:
return {
"id": dify_response.get("message_id", ""),
"object": "chat.completion",
"created": dify_response.get("created", int(time.time())),
"model": model, # 使用实际使用的模型
"choices": [{
"index": 0,
"message": {
"role": "assistant",
"content": dify_response.get("answer", "")
},
"finish_reason": "stop"
}]
}
else:
# 流式响应的转换在stream_response函数中处理
return dify_response
def create_openai_stream_response(content, message_id, model="claude-3-5-sonnet-v2"):
"""创建OpenAI格式的流式响应"""
return {
"id": message_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"delta": {
"content": content
},
"finish_reason": None
}]
}
@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
try:
openai_request = request.get_json()
logger.info(f"Received request: {json.dumps(openai_request, ensure_ascii=False)}")
model = openai_request.get("model", "claude-3-5-sonnet-v2")
logger.info(f"Using model: {model}")
# 验证模型是否支持
api_key = get_api_key(model)
if not api_key:
error_msg = f"Model {model} is not supported. Available models: {', '.join(MODEL_TO_API_KEY.keys())}"
logger.error(error_msg)
return {
"error": {
"message": error_msg,
"type": "invalid_request_error",
"code": "model_not_found"
}
}, 404
dify_request = transform_openai_to_dify(openai_request, "/chat/completions")
logger.info(f"Transformed request: {json.dumps(dify_request, ensure_ascii=False)}")
if not dify_request:
logger.error("Failed to transform request")
return {
"error": {
"message": "Invalid request format",
"type": "invalid_request_error",
}
}, 400
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
stream = openai_request.get("stream", False)
dify_endpoint = f"{DIFY_API_BASE}/chat-messages"
logger.info(f"Sending request to Dify endpoint: {dify_endpoint}, stream={stream}")
if stream:
def generate():
client = httpx.Client(timeout=None)
def flush_chunk(chunk_data):
"""Helper function to flush chunks immediately"""
return chunk_data.encode('utf-8')
def calculate_delay(buffer_size):
"""
根据缓冲区大小动态计算延迟
buffer_size: 缓冲区中剩余的字符数量
"""
if buffer_size > 30: # 缓冲区内容较多,快速输出
return 0.001 # 5ms延迟
elif buffer_size > 20: # 中等数量,适中速度
return 0.002 # 10ms延迟
elif buffer_size > 10: # 较少内容,稍慢速度
return 0.01 # 20ms延迟
else: # 内容很少,使用较慢的速度
return 0.02 # 30ms延迟
def send_char(char, message_id):
"""Helper function to send single character"""
openai_chunk = {
"id": message_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"delta": {
"content": char
},
"finish_reason": None
}]
}
chunk_data = f"data: {json.dumps(openai_chunk)}\n\n"
return flush_chunk(chunk_data)
# 初始化缓冲区
output_buffer = []
try:
with client.stream(
'POST',
dify_endpoint,
json=dify_request,
headers={
**headers,
'Accept': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
) as response:
generate.message_id = None
buffer = ""
for raw_bytes in response.iter_raw():
if not raw_bytes:
continue
try:
buffer += raw_bytes.decode('utf-8')
while '\n' in buffer:
line, buffer = buffer.split('\n', 1)
line = line.strip()
if not line or not line.startswith('data: '):
continue
try:
json_str = line[6:]
dify_chunk = json.loads(json_str)
if dify_chunk.get("event") == "message" and "answer" in dify_chunk:
current_answer = dify_chunk["answer"]
if not current_answer:
continue
message_id = dify_chunk.get("message_id", "")
if not generate.message_id:
generate.message_id = message_id
# 将当前批次的字符添加到输出缓冲区
for char in current_answer:
output_buffer.append((char, generate.message_id))
# 根据缓冲区大小动态调整输出速度
while output_buffer:
char, msg_id = output_buffer.pop(0)
yield send_char(char, msg_id)
# 根据剩余缓冲区大小计算延迟
delay = calculate_delay(len(output_buffer))
time.sleep(delay)
# 立即继续处理下一个请求
continue
elif dify_chunk.get("event") == "message_end":
# 快速输出剩余内容
while output_buffer:
char, msg_id = output_buffer.pop(0)
yield send_char(char, msg_id)
time.sleep(0.001) # 固定使用最小延迟快速输出剩余内容
final_chunk = {
"id": generate.message_id,
"object": "chat.completion.chunk",
"created": int(time.time()),
"model": model,
"choices": [{
"index": 0,
"delta": {},
"finish_reason": "stop"
}]
}
yield flush_chunk(f"data: {json.dumps(final_chunk)}\n\n")
yield flush_chunk("data: [DONE]\n\n")
except json.JSONDecodeError as e:
logger.error(f"JSON decode error: {str(e)}")
continue
except Exception as e:
logger.error(f"Error processing chunk: {str(e)}")
continue
finally:
client.close()
return Response(
stream_with_context(generate()),
content_type='text/event-stream',
headers={
'Cache-Control': 'no-cache, no-transform',
'Connection': 'keep-alive',
'Transfer-Encoding': 'chunked',
'X-Accel-Buffering': 'no',
'Content-Encoding': 'none'
},
direct_passthrough=True
)
else:
async def sync_response():
try:
async with httpx.AsyncClient() as client:
response = await client.post(
dify_endpoint,
json=dify_request,
headers=headers
)
if response.status_code != 200:
error_msg = f"Dify API error: {response.text}"
logger.error(f"Request failed: {error_msg}")
return {
"error": {
"message": error_msg,
"type": "api_error",
"code": response.status_code
}
}, response.status_code
dify_response = response.json()
logger.info(f"Received response from Dify: {json.dumps(dify_response, ensure_ascii=False)}")
openai_response = transform_dify_to_openai(dify_response, model=model)
return openai_response
except httpx.RequestError as e:
error_msg = f"Failed to connect to Dify: {str(e)}"
logger.error(error_msg)
return {
"error": {
"message": error_msg,
"type": "api_error",
"code": "connection_error"
}
}, 503
return asyncio.run(sync_response())
except Exception as e:
logger.exception("Unexpected error occurred")
return {
"error": {
"message": str(e),
"type": "internal_error",
}
}, 500
@app.route('/v1/models', methods=['GET'])
def list_models():
"""返回可用的模型列表"""
logger.info("Listing available models")
# 过滤掉没有API密钥的模型
available_models = [
model for model in AVAILABLE_MODELS
if MODEL_TO_API_KEY.get(model["id"])
]
response = {
"object": "list",
"data": available_models
}
logger.info(f"Available models: {json.dumps(response, ensure_ascii=False)}")
return response
if __name__ == '__main__':
host = os.getenv("SERVER_HOST", "127.0.0.1")
port = int(os.getenv("SERVER_PORT", 5000))
logger.info(f"Starting server on http://{host}:{port}")
app.run(debug=True, host=host, port=port)

4
requirements.txt Normal file
View File

@ -0,0 +1,4 @@
flask
httpx
python-dotenv
logging